المتوسطات المتحركة: ما هي من بين المؤشرات الفنية الأكثر شعبية، وتستخدم المتوسطات المتحركة لقياس اتجاه الاتجاه الحالي. كل نوع من المتوسط المتحرك (عادة مكتوبة في هذا البرنامج التعليمي كما ماجستير) هو نتيجة رياضية يتم حسابها عن طريق حساب متوسط عدد من نقاط البيانات الماضية. وبمجرد تحديدها، يتم رسم المتوسط الناتج بعد ذلك على رسم بياني للسماح للمتداولين بالنظر إلى البيانات الملساء بدلا من التركيز على تقلبات الأسعار اليومية المتأصلة في جميع الأسواق المالية. ويحسب أبسط شكل للمتوسط المتحرك، الذي يعرف على نحو ملائم بمتوسط متحرك بسيط، عن طريق الأخذ بالمتوسط الحسابي لمجموعة معينة من القيم. على سبيل المثال، لحساب متوسط متحرك أساسي لمدة 10 أيام، يمكنك إضافة أسعار الإغلاق خلال الأيام العشرة الماضية ثم تقسيم النتيجة بمقدار 10. في الشكل 1، يكون مجموع الأسعار خلال الأيام العشرة الماضية (110) هو مقسوما على عدد الأيام (10) للوصول إلى المتوسط لمدة 10 أيام. إذا أراد المتداول أن يرى المتوسط لمدة 50 يوما بدلا من ذلك، فسيتم إجراء نفس النوع من الحساب، ولكنه سيشمل الأسعار خلال ال 50 يوما الماضية. ويأخذ المتوسط الناتج أقل من (11) في الاعتبار نقاط البيانات العشرة الماضية من أجل إعطاء المتداولين فكرة عن كيفية تسعير أصل ما خلال الأيام العشرة الماضية. ربما كنت أتساءل لماذا التجار التقنيين استدعاء هذه الأداة المتوسط المتحرك وليس مجرد المتوسط العادي. الجواب هو أنه مع توفر قيم جديدة، يجب إسقاط أقدم نقاط البيانات من مجموعة ونقاط البيانات الجديدة يجب أن تأتي في لتحل محلها. وبالتالي، فإن مجموعة البيانات تتحرك باستمرار لحساب البيانات الجديدة عندما تصبح متاحة. وتضمن طريقة الحساب هذه أن المعلومات الحالية هي وحدها التي يجري حسابها. في الشكل 2، مرة واحدة يتم إضافة قيمة جديدة من 5 إلى مجموعة، مربع أحمر (تمثل نقاط البيانات 10 الماضية) يتحرك إلى اليمين ويتم إسقاط القيمة الأخيرة من 15 من الحساب. لأن قيمة صغيرة نسبيا من 5 يحل محل قيمة عالية من 15، هل تتوقع أن نرى متوسط انخفاض مجموعة البيانات، وهو ما يفعله، في هذه الحالة من 11 إلى 10. ماذا المتوسطات المتحركة تبدو مثل مرة واحدة قيم وقد تم حساب ما، يتم رسمها على الرسم البياني ثم متصلا لإنشاء خط متوسط متحرك. هذه الخطوط تقويس شائعة على الرسوم البيانية من التجار التقنيين، ولكن كيف يمكن استخدامها يمكن أن تختلف بشكل كبير (أكثر على هذا في وقت لاحق). كما ترون في الشكل 3، فمن الممكن لإضافة أكثر من متوسط متحرك واحد إلى أي مخطط عن طريق ضبط عدد الفترات الزمنية المستخدمة في الحساب. قد تبدو خطوط التقويس هذه مشتتة أو مربكة في البداية، لكنك ستنمو عليها مع مرور الوقت. الخط الأحمر هو ببساطة متوسط السعر خلال ال 50 يوما الماضية، في حين أن الخط الأزرق هو متوسط السعر خلال ال 100 يوم الماضية. الآن بعد أن فهمت ما هو المتوسط المتحرك وما يبدو، أدخل أيضا نوع مختلف من المتوسط المتحرك ودراسة كيف يختلف عن المتوسط المتحرك البسيط المذكور سابقا. المتوسط المتحرك البسيط يحظى بشعبية كبيرة بين المتداولين، ولكن مثل كل المؤشرات الفنية، فإن لديه منتقديه. كثير من الأفراد يجادلون بأن فائدة سما محدودة لأن كل نقطة في سلسلة البيانات يتم ترجيحها، بغض النظر عن مكان حدوثها في التسلسل. ويرى النقاد أن أحدث البيانات أكثر أهمية من البيانات القديمة، وينبغي أن يكون لها تأثير أكبر على النتيجة النهائية. ردا على هذا النقد، بدأ التجار في إعطاء المزيد من الوزن للبيانات الحديثة، والتي أدت منذ ذلك الحين إلى اختراع أنواع مختلفة من المتوسطات الجديدة، والأكثر شعبية منها هو المتوسط المتحرك الأسي (إما). (لمزيد من القراءة، انظر أساسيات المتوسطات المتحركة المرجحة وما هو الفرق بين المتوسط المتحرك المتوسط المتحرك و سما) المتوسط المتحرك الأسي المتوسط المتحرك الأسي هو نوع من المتوسط المتحرك يعطي وزنا أكبر للأسعار الأخيرة في محاولة لجعله أكثر استجابة إلى معلومات جديدة. تعلم المعادلة المعقدة إلى حد ما لحساب إما قد تكون غير ضرورية لكثير من التجار، لأن ما يقرب من جميع حزم الرسوم البيانية تفعل الحسابات بالنسبة لك. ومع ذلك، بالنسبة لك المهوسون الرياضيات هناك، وهنا هو المعادلة إما: عند استخدام الصيغة لحساب النقطة الأولى من إما، قد تلاحظ أنه لا توجد قيمة متاحة للاستخدام كما إما السابق. ويمكن حل هذه المشكلة الصغيرة من خلال بدء الحساب مع متوسط متحرك بسيط والاستمرار في مع الصيغة أعلاه من هناك. لقد قدمنا لك نموذج جدول يتضمن أمثلة واقعية عن كيفية حساب متوسط متحرك بسيط ومتوسط متحرك أسي. الفرق بين إما و سما الآن بعد أن لديك فهم أفضل لكيفية حساب سما و إما، دعونا نلقي نظرة على كيفية تختلف هذه المتوسطات. من خلال النظر في حساب إما، ستلاحظ أن المزيد من التركيز على نقاط البيانات الأخيرة، مما يجعلها نوع من المتوسط المرجح. في الشكل 5، فإن أعداد الفترات الزمنية المستخدمة في كل متوسط متطابقة (15)، لكن الاستجابة الفورية تستجيب بسرعة أكبر للأسعار المتغيرة. لاحظ كيف أن إما لديها قيمة أعلى عندما يكون السعر في ارتفاع، وينخفض أسرع من سما عندما يكون السعر في الانخفاض. هذه الاستجابة هي السبب الرئيسي في تفضيل العديد من التجار استخدام إما عبر سما. ماذا تعني الأيام المختلفة متوسط المتوسطات المتحركة هي مؤشر قابل للتخصيص تماما، مما يعني أنه يمكن للمستخدم اختيار أي إطار زمني يريدونه بحرية عند إنشاء المتوسط. وأكثر الفترات الزمنية شيوعا في المتوسطات المتحركة هي 15 و 20 و 30 و 50 و 100 و 200 يوم. وكلما قلت المدة الزمنية المستخدمة لإنشاء المتوسط، كلما زادت حساسية التغييرات في الأسعار. وكلما زادت المدة الزمنية، كلما كانت المدة أقل حساسية، أو أكثر سلاسة، سيكون المتوسط. ليس هناك إطار زمني مناسب لاستخدامه عند إعداد المتوسطات المتحركة. أفضل طريقة لمعرفة أي واحد يعمل بشكل أفضل بالنسبة لك هو تجربة مع عدد من فترات زمنية مختلفة حتى تجد واحد الذي يناسب الاستراتيجية الخاصة بك. المتوسطات المتحركة: كيفية استخدام المتوسط المتحرك - ما الهبوط المتناقص المتوسط المتحرك - ما كمثال سما، ضع في اعتبارك ضمانا مع أسعار الإغلاق التالية أكثر من 15 يوما: الأسبوع 1 (5 أيام) 20 و 22 و 24 و 25 و 23 الأسبوع 2 (5 أيام) 26 و 28 و 26 و 29 و 27 الأسبوع 3 (5 أيام) 28 و 30 و 27 و 29 و 28 من المتوقع أن تبلغ متوسط سعر الإغلاق خلال الأيام العشرة الأولى نقطة البيانات الأولى. نقطة البيانات التالية سوف تسقط أقرب الأسعار، إضافة السعر في يوم 11 واتخاذ المتوسط، وهلم جرا كما هو مبين أدناه. كما لوحظ سابقا، ماس تأخر العمل السعر الحالي لأنها تستند إلى الأسعار الماضية أطول فترة زمنية ل ما، وزيادة الفارق الزمني. وبالتالي فإن درجة الماجستير لمدة 200 يوم سيكون لها درجة أكبر بكثير من التأخر من ما 20 يوما لأنه يحتوي على أسعار لل 200 يوما الماضية. طول ما لاستخدام يعتمد على أهداف التداول، مع ماس أقصر تستخدم للتداول على المدى القصير والطويلة الأجل أكثر ملاءمة للمستثمرين على المدى الطويل. ويتبع المستثمرون والمتداولون على نطاق واسع ما يعادل 200 يوم، حيث يعتبر الفواصل فوق وتحت هذا المتوسط المتحرك إشارات تجارية مهمة. كما تقوم ماس بإرسال إشارات تجارية مهمة من تلقاء نفسها، أو عند تجاوز متوسطين. ارتفاع ما يشير إلى أن الأمن في اتجاه صاعد. في حين أن انخفاض ما يشير إلى أنه في اتجاه هبوطي. وبالمثل، يتم تأكيد الزخم التصاعدي مع كروس صعودي. والذي يحدث عندما يعبر ما على المدى القصير ما فوق ما على المدى الطويل. يتم تأكيد الزخم الهبوطي بكسر هبوطي، والذي يحدث عندما يعبر المتوسط المتحرك على المدى القصير تحت المتوسط المتحرك للأجل الطويل MA.8.4. نماذج المتوسط المتحرك بدلا من استخدام القيم السابقة للمتغير المتوقع في الانحدار، يستخدم نموذج المتوسط المتحرك أخطاء التنبؤ السابقة في نموذج تشبه الانحدار. y c ثيت e ثيتا e دوتس ثيتا e، وير إت إس وايت نويز. ونشير إلى هذا على أنه نموذج ما (q). بالطبع، نحن لا نلاحظ قيم إت، لذلك فإنه ليس حقا الانحدار بالمعنى المعتاد. لاحظ أن كل قيمة يت يمكن اعتبارها كمتوسط متحرك مرجح لأخطاء التنبؤ القليلة الماضية. ومع ذلك، ينبغي عدم الخلط بين متوسطات النماذج المتحركة مع تمهيد المتوسط المتحرك الذي ناقشنااه في الفصل 6. ويستخدم نموذج المتوسط المتحرك للتنبؤ بالقيم المستقبلية في حين يستخدم متوسط التحريك المتوسط لتقدير دورة اتجاه القيم السابقة. الشكل 8-6: مثالان للبيانات المستمدة من النماذج المتوسطة المتحركة بمعلمات مختلفة. يسار: ما (1) مع y t 20e t 0.8e t-1. رايت: ما (2) مع y t t - e t-1 0.8e t-2. وفي كلتا الحالتين، يوزع e t عادة الضوضاء البيضاء مع متوسط الصفر والتباين الأول. ويبين الشكل 8.6 بعض البيانات من نموذج ما (1) ونموذج ما (2). تغيير المعلمات theta1، النقاط، نتائج ثيتاق في أنماط سلسلة زمنية مختلفة. كما هو الحال مع نماذج الانحدار الذاتي، والتباين من مصطلح الخطأ وسوف تغير فقط حجم السلسلة، وليس الأنماط. ومن الممكن كتابة أي نموذج أر (p) ثابتة كنموذج ما (إنفتي). على سبيل المثال، باستخدام الاستبدال المتكرر، يمكننا أن نبرهن على ذلك لنموذج أر (1): يبدأ يت أمب phi1y و أمب phi1 (phi1y e) و أمب phi12y phi1 e و أمب phi13y phi12e phi1 e و أمبتكست إند المقدم -1 لوت phi1 لوت 1، فإن قيمة phi1k الحصول على أصغر كما يحصل ك أكبر. حتى في نهاية المطاف نحصل على إيت و phi1 ه phi12 ه phi13 e كدوتس، وهو ما (إنفتي) العملية. النتيجة العكسية تحمل إذا فرضنا بعض القيود على المعلمات ما. ثم يسمى نموذج ما عكسية. وهذا هو، أننا يمكن أن يكتب أي ماه (q) عملية لا يمكن عكسها باعتبارها أر (إنفتي) العملية. نماذج لا تقلب ليست ببساطة لتمكيننا من تحويل نماذج ما إلى نماذج أر. لديهم أيضا بعض الخصائص الرياضية التي تجعلها أسهل للاستخدام في الممارسة العملية. إن قيود العوائق مماثلة لقيود المحطات. للحصول على نموذج ما (1): -1lttheta1lt1. للحصول على نموذج ما (2): -1lttheta2lt1، theta2theta1 غ-1، theta1 - theta2 لوت 1. ظروف أكثر تعقيدا عقد ل qge3. مرة أخرى، سوف R رعاية هذه القيود عند تقدير النماذج.
No comments:
Post a Comment